



### **Technical Demonstration Report**

| <b>Customer:</b>         | Tourmaline                  | Location (LSD)     | 04-17-052-15W5  |
|--------------------------|-----------------------------|--------------------|-----------------|
| Product:                 | KVA38-19-D2                 | Evaluation Date(s) | May 17, 2024 –  |
|                          | KVA38-13-D2                 |                    | August 17, 2024 |
| <b>Kinitics Contact:</b> | Ryan Gibson                 |                    |                 |
|                          | info@kiniticsautomation.com |                    |                 |
| <b>Customer Contact:</b> | James Phillips              |                    |                 |

#### Introduction:

Wellsite 04-17-052-15W5 is a remote operating natural gas wellsite near Edson Alberta. The testing was conducted as part of Tourmaline's involvement in the NGIF Emissions Testing Center (ETC) Program and was funded in part by Prairies Economic Development Canada. Kinitics KVA38 actuators were installed onto a three-phase separator package to operate two dump valves and one backpressure control valve. The KVA38 is a spring-loaded electric valve actuator designed for the energy sector.

### **Project Objective:**

Replace prototype valve actuators, installed in 2022, with commercial samples and assess whether the commercial units can meet operational requirements. The dump valve actuators must maintain valve interface, and avoid unintended fluids flowing through the valve. The backpressure control valve actuator must maintain the desired backpressure in the system as commanded by the provided position signal.





Figure 1 - Prototype and Commercial Actuators Compared

### Summary:

Kinitics electric valve actuators were deployed onto a natural gas well near Edson, Alberta. After the actuators indicated a setup issue with the power system, the issue was corrected and the actuators were run through a 3-month evaluation period. The actuators automated the separator package effectively and continue to do so, with no unintentional shutdowns or incidents caused by Kinitics equipment. Over 10,000 actuations and 160 days of operation has been recorded so far on the Kinitics equipment, and approximately 6,500m<sup>3</sup> of natural gas produced.





### Background:

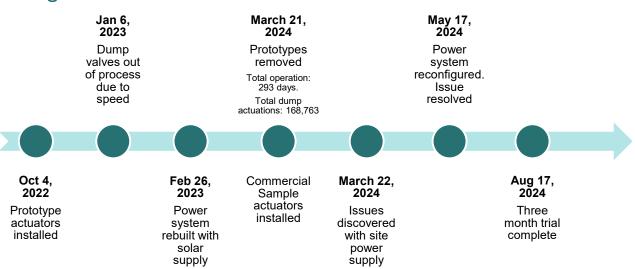



Figure 2 - Timeline summary of Kinitics equipment demonstrations on Wellsite 04-17-052-15W5

### Prototype Demonstration



Kinitics deployed prototype actuators onto the wellsite with the intention of validating the core technology and discovering operational requirements. Two actuators were installed to operate the water and condensate dump valves, while a third would operate the backpressure control valve. It was quickly discovered that the smaller actuators did not actuate quickly enough for dump valve operation. The backpressure control valve actuator remained in operation for the duration of the test period.

Figure 3 - Prototype actuators

In February 2023, an initiative was undertaken to refit the wellsite with solar power rather than the ICE generator previously in use. While it wasn't immediately apparent, electrical setup issues were present which degraded device performance including eliminating device feedback and slowing actuation speed.

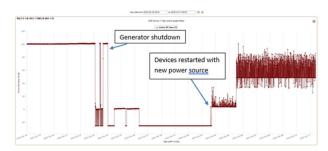



Figure 4 - Feedback signal showing electrical issues.





### Commercial Design

After the completion of the prototype trial period, the KVA38 underwent a planned design upgrade and refinement to address feedback from site operators and prepare for commercial release. A datasheet excerpt is included in Appendix A. Key product improvements included:

- 1. Increased closing speed by 5x
- 2. Reduced power consumption by 20%
- 3. Addition of an indicator light for local feedback
- 4. Simplified mounting system for faster installation
- 5. Designed for mass production

### May 2024 Power System Refit

Commercial-ready upgraded actuators were deployed to the wellsite in March 2024. The enhanced sensors and communication tools inside the



Figure 5 - KVA38 commercial version installed

actuators immediately identified an issue with the power system setup. Significant voltage drop on the 24 VDC power system was measured far in excess of typical resistive losses in cabling, charge controllers etc. which persisted once the ICE generator was placed back into service. While the backpressure control actuator was able to operate on low voltage and remained in process, the dump actuators were forced offline until the power system setup issue could be rectified. Corrective actions included:

- 1. Simplifying the cable run
- 2. Replacing old cabling
- 3. Reinstalling all terminal connections between the battery bank and actuators

On May 17, 2024 the dump actuators were reactivated and reported normal function. SCADA reports show consistent actuation for the evaluation period of 3 months.

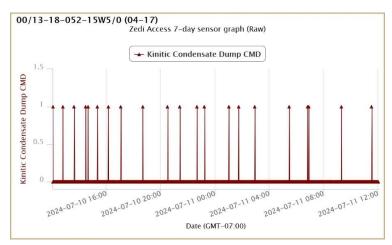



Figure 6 - Sample capture of Kinitics dump valve operation





### **Test Plan**

Test Start Date Test End Date Experiment Length

March 21, 2024 (BPCV) August 17, 2024 3 Months

May 17, 2024 (dump valves)

#### **Installed equipment:**

| Actuators:  | Serial<br>Number | Valve:         | Purpose:                   | Monitored Parameters:                                    |
|-------------|------------------|----------------|----------------------------|----------------------------------------------------------|
| KVA38-19-D2 | K016733          | NPS2 D<br>body | Backpressure control valve | Command signal, feedback signal, status, faults, runtime |
| KVA38-13-D2 | K016735          | D2             | Water dump valve           | Command signal, feedback signal                          |
| KVA38-13-D2 | K016732          | D2             | Condensate dump valve      | Command signal, feedback signal                          |

#### **Power Supply:**

| Equipment:                       | Size: | Description:                              |
|----------------------------------|-------|-------------------------------------------|
| Solar Panels                     | 900W  | 3x 300W solar panels, vertically oriented |
| Solar controller/Battery Charger | 960W  | Phoenix Contact Quint-PS/1AC/24DC/40      |
| Battery Bank                     | 480Ah | 8x 12VDC, 120Ah. 4 banks of 2             |
| Generator                        | -     | Primegen M5                               |

### Sample Data Captures of Actuator Behaviour During Evaluation Period

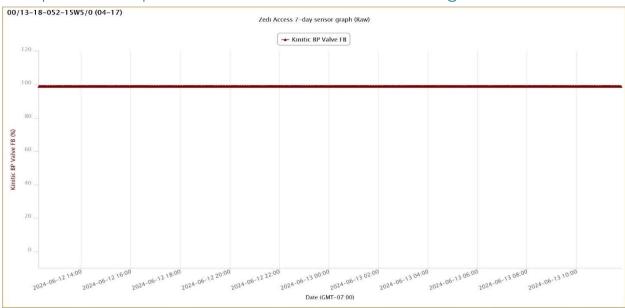



Figure 7 - Backpressure control valve maintaining 100% position as per command signal





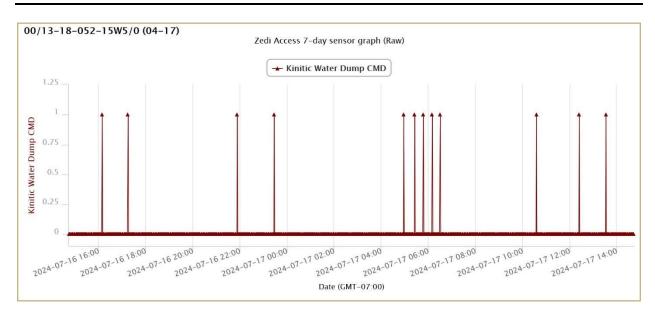



Figure 8 - Water dump valve command signal

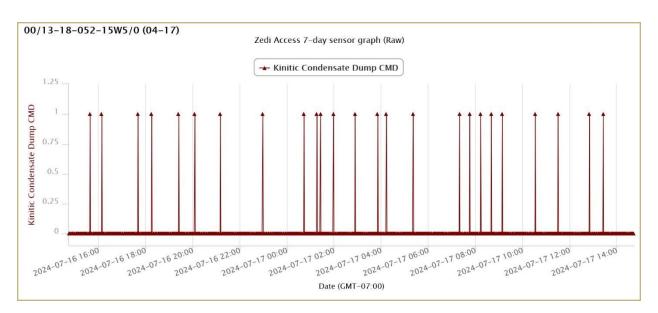



Figure 9 - Condensate dump valve command signal





### **Operational Summary**

All values are taken up to date of report compilation (September 20, 2024)

#### **Dump Valve Summary**

| Water dump cycles                 | 4,406               |
|-----------------------------------|---------------------|
| Condensate dump cycles            | 5,787               |
| Total dump cycles                 | 10,193              |
| Total water volume processed      | 161.08m³            |
| Total condensate volume processed | 58.18m <sup>3</sup> |

#### **Backpressure Control Valve Summary**

| Backpressure control valve operational time | 161 days                  |
|---------------------------------------------|---------------------------|
| Total gas produced                          | Approx 6500m <sup>3</sup> |

#### **Operations Summary**

| Reported incidents:               | 0 |
|-----------------------------------|---|
| Reported unintentional shutdowns: | 0 |

### Conclusion

After installation the sample valve actuators detected and reported an issue with the power supply. Once the site power supply issues were rectified, the Kinitics valve actuators operated effectively over a 3 month evaluation period and have continued to automate the separator package beyond the completion date. Over 10,000 dump cycles have been performed, and over 160 days of backpressure operation has been recorded. The dump valve actuators lift and close at an adequate rate for the demands of the separator. The backpressure control actuator is highly responsive and accurate to the control system commands.





### Appendix A: KVA38 Datasheet





**PRODUCT DATA SHEET** 





## Appendix B: Prototype vs Commercial Product

# **Commercial Product**



Learnings from field trials have been applied to the commercial product

#### Product Enhancements

- Increased stroke and speed ratings to service more applications
- Replaced billet components with metal castings to reduce CoGS
- Improved installation process
- · Focus on power optimization
- Designed for mass production



March 2024